The Cosmic Evolution Early Release Science Survey (CEERS)

PI: Steven Finkelstein (UT Austin)

Co-l's: Mark Dickinson (NOAO), Harry Ferguson (STScI), Andrea Grazian (Rome), Norman Grogin (STScI), Jeyhan Kartaltepe (RIT), Lisa Kewley (ANU), Dale Kocevski (Colby), Anton Koekemoer (STScI), Jennifer Lotz (STScI), Casey Papovich (Texas A&M), Laura Pentericci (Rome), Pablo Perez-Gonzalez (Madrid), Nor Pirzkal (STScI), Swara Ravindranath (STScI), Rachel Somerville (Rutgers), Jon Trump (UConn) & Steve Wilkins (Sussex)

Full CEERS team: 105 scientists over 10 countries, including 28 institutions

CEERS Strategy

 Coordinated parallels involving three instruments and four observing modes, to perform numerous validation tests, and targets several science drivers across 1 < z < 13.

CEERS Observing Plan

- Primary Field: EGS
 - Image shows observations during December (can also be done in ~June)
- 4 pointings: MIRI prime w/ NIRCam in parallel
 - MIRI: 2 pointings deep F560W & F770W, 2 pointings shallower obs out to 21 µm.
- 6 pointings: NIRSpec prime with NIRCam parallel

 - R~1000 spectroscopy in all six pointings, R~100 in four pointings.
- 4 pointings: NIRCam grism prime (F356W)

Science Goal #1

 CEERS should detect ~5-50 galaxies at z > 10, which can distinguish between models which assume different starforming efficiencies.

Science Goal #2

 CEERS will detect numerous diagnostic emission lines out to z~10, allowing spectroscopic confirmation and measurement of key physical properties, including ionization parameter and metallicity.

Table 1: #Galaxies Observed by CEERS NIRSpec

	All z	6 < z < 9	3 < z < 6	1 < z < 3
R~1000 (6 pointings)	330	32	97	161
R~100 (4 pointings)	299 (150)	27 (21)	82 (57)	150 (55)

* Numbers in parentheses are those covered at both R~100 and ~1000

Science Goal #3

 CEERS will unveil high-resolution rest-optical morphologies for modestly-high redshift galaxies, and high-resolution imaging in the PAH/hot-dust continuum for galaxies at moderate redshifts.

M* vs. SFR from our MIRI simulations. CEERS goes 1 dex deeper than MIPS/FIDEL.

Example z~9 Observation

Example z~6 Observation

CEERS NIRSpec will measure changes in ionization parameter (Q) and Z (left) by *detecting* changes in [NeIII]/[OII] and [OIII/Hb] ratios, shown by a MAPPINGS model of a z=6 L* galaxy (top). CEERS observes all four lines for ~250 galaxies over 2 < z < 9.

NIRCam Grism

- We included a NIRCam grism component to:
 - Allow direct measures of slit-losses
 - Demonstrate this is a mode for science, and specifically compare to NIRSpec R~100 and R~1000
 - Perform a blind search for emission lines at high-z.
 - We expect ~50 [OIII] lines at 5.3 < z
 < 7, almost all from galaxies undetected in CANDELS.
 - Also sensitive to Ha and [OII] at lower and higher redshift.

1245s F356W grism integration @ z=6

NB: Timeline needs to be updated for new launch date

Summary

- CEERS is designed to provide data to nearly all blank-field investigations into the 0.5 < z < 12 universe.
 - It will include data representative of medium-depth *JWST* surveys in nearly all modes.
 - 1-5 μm imaging w/ NIRCam, 5-20 μm imaging w/ MIRI
 - 1-5 μm R~100 and R~1000 spectroscopy with NIRSpec
 - 3-4 µm grism spectroscopy with NIRCam
- The CEERS team is dedicated to a rapid release of high quality reduced data products and catalogs.

Communication: We are in the process of setting up a website which we will use to communicate with the community (hosting a blog, and also using twitter).